If the Boolean expression

Question:

If the Boolean expression

$(p \oplus q)^{\wedge}(\sim p \odot q)$ is equivalent to $p^{\wedge} q$, where $\oplus, \odot \in\{\wedge, \vee\}$, then the ordered pair $(\oplus, \odot)$ is:

  1. $(\wedge, \vee)$

  2. $(\vee, v)$

  3. $(\wedge, \wedge)$

  4. $(\vee, \wedge)$


Correct Option: 1

Solution:

$(p \oplus q) \wedge(\sim p \square q) \equiv p \wedge q($ given $)$

from truth table $(\oplus, \square)=(\wedge, \vee)$

Leave a comment