If the area of the triangle formed by the points (x, 2x), (−2, 6) and (3, 1) is 5 square units , then x =
(a) $\frac{2}{3}$
(b) $\frac{3}{5}$
(c) 3
(d) 5
We have the co-ordinates of the vertices of the triangle as $\mathrm{A}(x, 2 x) ; \mathrm{B}(-2,6) ; \mathrm{C}(3,1)$ which has an area of 5 sq.units.
In general if $\mathrm{A}\left(x_{1}, y_{1}\right) ; \mathrm{B}\left(x_{2}, y_{2}\right) ; \mathrm{C}\left(x_{3}, y_{3}\right)$ are non-collinear points then area of the triangle formed is given by-,
$\operatorname{ar}(\Delta \mathrm{ABC})=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
So,
$5=\frac{1}{2}|x(6-1)-2(1-2 x)+3(2 x-6)|$
$5=\frac{1}{2}|15 x-20|$
Simplify the modulus function to get,
$3 x-4=\pm 2$
$x=\frac{4 \pm 2}{3}$
Therefore,
$x=2, \frac{2}{3}$
So the answer is (a)