If the area of an equilateral triangle inscribed in the circle

Question:

If the area of an equilateral triangle inscribed in the circle, $x^{2}+y^{2}+10 x+12 y+c=0$ is $27 \sqrt{3}$ sq.

units then $\mathrm{c}$ is equal to :

 

  1. 20

  2. 25

  3. 13

  4. $-25$


Correct Option: , 2

Solution:

$3\left(\frac{1}{2} \mathrm{r}^{2} \cdot \sin 120^{\circ}\right)=27 \sqrt{3}$

$\frac{r^{2}}{2} \frac{\sqrt{3}}{2}=\frac{27 \sqrt{3}}{3}$

$r^{2}=\frac{108}{3}=36$

Radius $=\sqrt{25+36-C}=\sqrt{36}$

$\therefore$ Option (2)

Leave a comment