If the area of an equilateral triangle inscribed in the circle, $x^{2}+y^{2}+10 x+12 y+c=0$ is $27 \sqrt{3}$ sq. units then $\mathrm{c}$ is equal to:
Correct Option: , 4
Let the sides of equilateral $\Delta$ inscribed in the circle be $a$, then
$\cos 30^{\circ}=\frac{a}{2 r}$
$\frac{\sqrt{3}}{2}=\frac{a}{2 r}$
$a=\sqrt{3} r$
Then, area of the equilateral triangle $=\frac{\sqrt{3}}{4} a^{2}$
$=\frac{\sqrt{3}}{4}(\sqrt{3} r)^{2}$
$=\frac{3 \sqrt{3}}{4} r^{2}$
But it is given that area of equilateral triangle $=27 \sqrt{3}$
Then, $27 \sqrt{3}=\frac{3 \sqrt{3}}{4} r^{2}$
$r^{2}=36$
$\Rightarrow \quad r=6$
But $\left(-\frac{1}{2} \text { coeff. of } x\right)^{2}+\left(-\frac{1}{2} \text { coeff. of } y\right)^{2}$
$-$ constant term $=r^{2}$
$(-5)^{2}+(-6)^{2}-c=36$