Question:
If the area of a trapezium is 28 cm2 and one of its parallel sides is 6 cm, find the other parallel side if its altitude is 4 cm.
Solution:
Given:
Area of the trapezium $=28 \mathrm{~cm}^{2}$
Length of one of its parallel sides $=6 \mathrm{~cm}$
Altitude $=4 \mathrm{~cm}$
Let the other side be $\mathrm{x} \mathrm{cm} .$
Area of trapezium $=\frac{1}{2} \times($ Sum of the parallel sides $) \times($ Altitude $)$
$\Rightarrow 28=\frac{1}{2} \times(6+\mathrm{x}) \times(4)$
$\Rightarrow 28=2 \times(6+\mathrm{x})$
$\Rightarrow 6+\mathrm{x}=\frac{28}{2}=14$
$\Rightarrow \mathrm{x}=14-6=8 \mathrm{~cm}$
Hence, the length of the other parallel side of the trapezium is $8 \mathrm{~cm}$.