If the angular velocity of earth's spin is increased

Question:

If the angular velocity of earth's spin is increased such that the bodies at the equator start floating, the duration of the day would be approximately :

(Take : $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the radius of earth, $\mathrm{R}=6400 \times 10^{3} \mathrm{~m}$, Take $\left.\pi=3.14\right)$

  1. 60 minutes

  2. does not change

  3. 1200 minutes

  4. 84 minutes


Correct Option: , 4

Solution:

For objects to float

$m g=m \omega^{2} R$

$\omega=$ angular velocity of earth.

$\mathrm{R}=$ Radius of earth

$\omega=\sqrt{\frac{g}{R}}$ ............(1)

Duration of day $=\mathrm{T}$

$\mathrm{T}=\frac{2 \pi}{\omega}$ ............(2)

$\Rightarrow T=2 \pi \sqrt{\frac{R}{g}}$

$=2 \pi \sqrt{\frac{6400 \times 10^{3}}{10}}$

$\Rightarrow \frac{\mathrm{T}}{60}=83.775$ minutes

$\simeq 84$ minutes

Leave a comment