If the angles of elevation of a tower from two points distant a and b (a>b) from its foot and in the same straight line from it are 30° and 60°, then the height of the tower is
(a) $\sqrt{a+b}$
(b) $\sqrt{a b}$
(c) $\sqrt{a-b}$
(d) $\sqrt{\frac{a}{b}}$
Let be the height of tower
Given that: angle of elevation are and.
Distance and
Here, we have to find the height of tower.
So we use trigonometric ratios.
In a triangle,
$\Rightarrow \tan C=\frac{A B}{B C}$
$\Rightarrow \tan 60^{\circ}=\frac{A B}{B C}$
$\Rightarrow \tan 60^{\circ}=\frac{h}{b}$
Again in a triangle ABD,
$\Rightarrow \tan D=\frac{A B}{B D}$
$\Rightarrow \tan 30^{\circ}=\frac{h}{a}$
$\Rightarrow \tan \left(90^{\circ}-60^{\circ}\right)=\frac{h}{a}$
$\Rightarrow \cot 60^{\circ}=\frac{h}{a}$
$\Rightarrow \frac{1}{\tan 60^{\circ}}=\frac{h}{a}$
$\Rightarrow \frac{b}{h}=\frac{h}{a} \quad$ Put $\tan 60^{\circ}=\frac{h}{b}$
$\Rightarrow h^{2}=a b$
$\Rightarrow h=\sqrt{a b}$
Hence the correct option is $b$.