If the angle of elevation of a cloud from a point h metres above a lake is a and the angle of depression of its reflection in the lake be b,
If the angle of elevation of a cloud from a point h metres above a lake is a and the angle of depression of its reflection in the lake be b, prove that the distance of the cloud from the point of observation is
$\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}$
Let $C^{\prime}$ be the image of cloud $C$. We have $\angle C A B=\alpha$ and $\angle B A C^{\prime}=\beta$.
Again let .and be the distance of cloud from point of observation.
We have to prove that
$A C=\frac{2 h \sec \alpha}{(\tan \beta-\tan \alpha)}$
The corresponding figure is as follows
We use trigonometric ratios.
In
$\Rightarrow \quad \tan \alpha=\frac{B C}{A B}$
$\Rightarrow \quad \tan \alpha=\frac{x}{A B}$
Again in
$\Rightarrow \quad \tan \beta=\frac{B C^{\prime}}{A B}$
$\Rightarrow \quad \tan \beta=\frac{x+2 h}{A B}$
Now,
$\Rightarrow \tan \beta-\tan \alpha=\frac{x+2 h}{A B}-\frac{x}{A B}$
$\Rightarrow \tan \beta-\tan \alpha=\frac{2 h}{A B}$
$\Rightarrow \quad A B=\frac{2 h}{\tan \beta-\tan \alpha}$
Again in $\triangle A B C$
$\Rightarrow \quad \cos \alpha=\frac{A B}{A C}$
$\Rightarrow \quad A C=\frac{A B}{\cos \alpha}$
$\Rightarrow \quad A C=\frac{2 h \sec \alpha}{(\tan \beta-\tan \alpha)}$
Hence distance of cloud from points of observation is $\frac{2 h \sec \alpha}{\tan \beta-\tan \alpha}$