If the altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is
Question:
If the altitudes from two vertices of a triangle to the opposite sides are equal, then the triangle is
(a) equilateral
(b) isosceles
(c) scalene
(d) right-angled
Solution:
(b) isosceles
In $\triangle A B C$, BL $\|$ AC.
CM $\| \mathrm{AB}$ such that $\mathrm{BL}=\mathrm{CM}$.
To prove: AB =AC
In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{ACM}$
$\mathrm{BL}=\mathrm{CM} \quad$ (Given)
$\angle \mathrm{BAL}=\angle \mathrm{CAM} \quad$ (Common angle)
$\angle \mathrm{ALB}=\angle \mathrm{AMC} \quad$ (Each $90^{\circ}$ )
$\triangle \mathrm{ABL} \cong \triangle \mathrm{ACM} \quad(\mathrm{AAS}$ criterion $)$
$\therefore \mathrm{AB}=\mathrm{AC} \quad(\mathrm{CPCT})$