Question:
If $x \sqrt{1+y}+y \sqrt{1+x}=0$, for, $-1 $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$
Solution:
It is given that,
$x \sqrt{1+y}+y \sqrt{1+x}=0$
$\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}$
Squaring both sides, we obtain
$x^{2}(1+y)=y^{2}(1+x)$
$\Rightarrow x^{2}+x^{2} y=y^{2}+x y^{2}$
$\Rightarrow x^{2}-y^{2}=x y^{2}-x^{2} y$
$\Rightarrow x^{2}-y^{2}=x y(y-x)$
$\Rightarrow(x+y)(x-y)=x y(y-x)$
$\therefore x+y=-x y$
$\Rightarrow(1+x) y=-x$
$\Rightarrow y=\frac{-x}{(1+x)}$
Differentiating both sides with respect to x, we obtain
$y=\frac{-x}{(1+x)}$
$\frac{d y}{d x}=-\frac{(1+x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+x)}{(1+x)^{2}}=-\frac{(1+x)-x}{(1+x)^{2}}=-\frac{1}{(1+x)^{2}}$
Hence, proved.