if the

Question:

If $x<0$, then $\tan ^{-1} x+\tan ^{-1} \frac{1}{x}$ is equal to ____________________.

Solution:

We know

$\tan ^{-1} \frac{1}{x}= \begin{cases}\cot ^{-1} x, & \text { for } x>0 \\ -\pi+\cot ^{-1} x, & \text { for } x<0\end{cases}$

$\therefore \tan ^{-1} x+\tan ^{-1} \frac{1}{x}$

$=\tan ^{-1} x+\cot ^{-1} x-\pi$           $(x<0)$

$=\frac{\pi}{2}-\pi$                            $\left(\tan ^{-1} \mathrm{x}+\cot ^{-1} \mathrm{x}=\frac{\pi}{2}, \forall x \in \mathbf{R}\right)$

$=-\frac{\pi}{2}$

If $x<0$, then $\tan ^{-1} x+\tan ^{-1} \frac{1}{x}$ is equal to $-\frac{\pi}{2}$

Leave a comment