If the 2nd, 3rd and 4th terms in the expansion of (x + a)n are 240, 720 and 1080 respectively, find x, a, n.
In the expansion of $(x+a)^{n}$, the $2 \mathrm{nd}, 3$ rd and 4 th terms are ${ }^{n} \mathrm{C}_{1} x^{\mathrm{n}-1} a^{1},{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{\mathrm{n}-2} \mathrm{a}^{2}$ and ${ }^{n} C_{3} x^{\mathrm{n}-3} a^{3}$, respectively.
According to the question,
${ }^{n} C_{1} x^{n-1} a^{1}=240$
${ }^{n} C_{2} x^{n-2} a^{2}=720$
${ }^{n} C_{3} x^{n-3} a^{3}=1080$
$\Rightarrow \frac{{ }^{n} C_{2} x^{n-2} a^{2}}{{ }^{n} C_{1} x^{n-1} a^{1}}=\frac{720}{240}$
$\Rightarrow \frac{n-1}{2 x} a=3$
$\Rightarrow \frac{a}{x}=\frac{6}{n-1} \quad \ldots(1)$
Also,
$\frac{{ }^{n} C_{3} x^{n-3} a^{3}}{{ }^{n} C_{2} x^{n-2} a^{2}}=\frac{1080}{720}$
$\Rightarrow \frac{n-2}{3 x} a=\frac{3}{2}$
$\Rightarrow \frac{a}{x}=\frac{9}{2 n-4} \quad \ldots(2)$
Using $(1)$ and $(2)$ we get
$\frac{6}{n-1}=\frac{9}{2 n-4}$
$\Rightarrow n=5$
Putting in eqn (1) we get
$\Rightarrow 2 a=3 x$
Now, ${ }^{5} C_{1} x^{5-1}\left(\frac{3}{2} x\right)=240$
$\Rightarrow 15 x^{5}=480$
$\Rightarrow x^{5}=32$
$\Rightarrow x=2$
By putting the value of $x$ and $n$ in (1) we get
$a=3$