If tanx=

Question:

If $\tan x=\frac{a}{b}$, then $b \cos 2 x+a \sin 2 x$ is equal to

(a) $a$

(b) $b$

(c) $\frac{a}{b}$

(d) $\frac{b}{a}$

Solution:

Given: $\tan x=\frac{a}{b}$

Now,

$b \cos 2 x+a \sin 2 x$

$=b\left(\frac{1-\tan ^{2} x}{1+\tan ^{2} x}\right)+a\left(\frac{2 \tan x}{1+\tan ^{2} x}\right)$

$=b\left(\frac{1-\frac{a^{2}}{b^{2}}}{1+\frac{a^{2}}{b^{2}}}\right)+a\left(\frac{2 \times \frac{a}{b}}{1+\frac{a^{2}}{b^{2}}}\right)$

$=\frac{b\left(b^{2}-a^{2}\right)}{a^{2}+b^{2}}+\frac{2 a^{2} b}{a^{2}+b^{2}}$

$=\frac{b^{3}-a^{2} b+2 a^{2} b}{a^{2}+b^{2}}$

$=\frac{b^{3}+a^{2} b}{a^{2}+b^{2}}$

$=\frac{b\left(b^{2}+a^{2}\right)}{a^{2}+b^{2}}$

$=b$

Hence, the correct answer is option B.

 

 

 

Leave a comment