If tangents PA and PB from a point P to a circle with centre O are drawn, so that ∠APB = 80°, then ∠POA = ?
(a) 40°
(b) 50°
(c) 80°
(d) 60°
(b) 50°
From $\Delta O P A$ and $\Delta O P B$
$O A=O B(\mathrm{R}$ adi i of the same circle $)$
$O P(C$ ommon side $)$
$P A=P B$ (S ince tangents drawn from an external point to a circle are equal)
$\therefore \Delta O P A \cong \Delta O P B$ (SSS rule)
$\therefore \angle A P O=\angle B P O$
$\therefore \angle A P O=\frac{1}{2} \angle A P B=40^{\circ}$
$A$ nd $\angle O A P=90^{\circ}$ (S ince tangents drawn from an external point are
perpendicular to the radius at point of contact)
Now, in $\triangle O A P, \angle A O P+\angle O A P+\angle A P O=180^{\circ}$
$\Rightarrow \angle A O P+90^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle A O P=180^{0}-130^{0}=50^{0}$