If tan x=t

Question:

If $\tan x=t$ then $\tan 2 x+\sec 2 x=$

(a) $\frac{1+t}{1-t}$

(b) $\frac{1-t}{1+t}$

(c) $\frac{2 t}{1-t}$

(d) $\frac{2 t}{1+t}$

Solution:

(a) $\frac{1+t}{1-t}$

$\tan 2 x+\sec 2 x=\frac{2 \tan x}{1-\tan ^{2} x}+\frac{1+\tan ^{2} x}{1-\tan ^{2} x}$

$=\frac{2 \tan x+1+\tan ^{2} x}{1-\tan ^{2} x}$

$=\frac{(1+\tan x)^{2}}{1-\tan ^{2} x}$

$=\frac{(1+\tan x)(1+\tan x)}{(1+\tan x)(1-\tan x)}$

$=\frac{1+\tan x}{1-\tan x}$

$=\frac{1+t}{1-t} \quad[\tan x=t$ (given) $]$

Leave a comment