If tan x

Question:

If $\tan x=\frac{a}{b}$, show that $\frac{a \sin x-b \cos \mathrm{x}}{a \sin x+b \cos x}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.

Solution:

LHS:

$\frac{a \sin x-b \cos x}{a \sin x+b \cos x}$

Dividing by $b \cos x:$

$=\frac{\frac{a \tan x}{b}-1}{\frac{a \tan x}{b}+1}$

Substituting the value of $\tan x$

$=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

= RHS

Hence proved.

Leave a comment