If $\tan \theta=\frac{a}{b}$, prove that $\frac{a \sin \theta+b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$.
Given:
$\tan \theta=\frac{a}{b}$
Now, we know that $\tan \theta=\frac{\sin \theta}{\cos \theta}$
Therefore equation (1) becomes
$\frac{\sin \theta}{\cos \theta}=\frac{a}{b}$....(2)
Now, multiplying by $\frac{a}{b}$ on both sides of equation (2)
We get,
$\frac{a}{b} \times \frac{\sin \theta}{\cos \theta}=\frac{a}{b} \times \frac{a}{b}$
Therefore,
$\frac{a \sin \theta}{b \cos \theta}=\frac{a^{2}}{b^{2}}$...(3)
Now by applying dividendo in above equation (3)
We get,
$\frac{a \sin \theta-b \cos \theta}{b \cos \theta}=\frac{a^{2}-b^{2}}{b^{2}}$
Now by applying componendo in equation (3)
We get,
$\frac{a \sin \theta+b \cos \theta}{b \cos \theta}=\frac{a^{2}+b^{2}}{b^{2}}$....(5)
Now, by dividing equation (4) by equation (5)
We get,
$\frac{\frac{a \sin \theta-b \cos \theta}{b \cos \theta}}{\frac{a \sin \theta+b \cos \theta}{b \cos \theta}}=\frac{\frac{a^{2}-b^{2}}{b^{2}}}{\frac{a^{2}+b^{2}}{b^{2}}}$
Therefore,
$\frac{a \sin \theta-b \cos \theta}{b \cos \theta} \times \frac{b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{b^{2}} \times \frac{b^{2}}{a^{2}+b^{2}}$
Therefore, $b \cos \theta$ and $b^{2}$ cancels on L.H.S and R.H.S respectively and we get,
$\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
Hence, it is proved that
$\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$