Question:
If $\tan A+\tan B=a$ and $\cot A+\cot B=b$, prove that $\cot (A+B) \frac{1}{a}-\frac{1}{b}$.
Solution:
Given:
$\cot A+\cot B=b$
$\Rightarrow \frac{1}{\tan A}+\frac{1}{\tan B}=b$
$\Rightarrow \frac{\tan A+\tan B}{\tan A \tan B}=b$
NOW,
$\mathrm{RHS}=\frac{1}{a}-\frac{1}{b}$
$=\frac{1}{\tan A+\tan B}-\frac{\tan A \tan B}{\tan A+\tan B}$
$=\frac{1-\tan A \tan B}{\tan A+\tan B}$
$=\cot (A+B)$
= RHS
Hence proved.