If tan (A − B) = 1 and sec (A + B) =

Question:

If $\tan (A-B)=1$ and $\sec (A+B)=\frac{2}{\sqrt{3}}$, the smallest positive value of $B$ is

(a) $\frac{25 \pi}{24}$

(b) $\frac{19}{24}$

(c) $\frac{13 \pi}{24}$

(d) $\frac{11 \pi}{24}$

Solution:

(b) $\frac{19}{24}$

Given:

$\tan (A-B)=1$ and $\sec (A+B)=\frac{2}{\sqrt{3}}$

$\Rightarrow A-B=\frac{\pi}{4} \ldots(1)$ and $A+B=\frac{\pi}{6} \ldots(2)$

Adding these equations we get:

$2 A=\frac{\pi}{4}+\frac{\pi}{6}$

$\Rightarrow A=\frac{5 \pi}{24}$

$\Rightarrow$ Smallest possible value of $B=\pi-\frac{5 \pi}{24}=\frac{19 \pi}{24}$.

 

Leave a comment