If tan

Question:

If $\tan \frac{x}{2}=\frac{\sqrt{1-e}}{1+e} \tan \frac{\alpha}{2}$, then $\cos \alpha=$

(a) $1-e \cos (\cos x+e)$

(b) $\frac{1+e \cos x}{\cos x-e}$

(c) $\frac{1-e \cos x}{\cos x-e}$

(d) $\frac{\cos x-e}{1-e \cos x}$

Solution:

(d) $\frac{\cos x-e}{1-e \cos x}$

Given : $\tan \frac{x}{2}=\sqrt{\frac{1-e}{1+e}} \tan \frac{\alpha}{2}$

$\Rightarrow \frac{\tan \frac{x}{2}}{\tan \frac{\alpha}{2}}=\sqrt{\frac{1-\mathrm{e}}{1+\mathrm{e}}}$

Squaring both sides, we get,

$\frac{\tan ^{2} \frac{x}{2}}{\tan ^{2} \frac{\alpha}{2}}=\frac{1-\mathrm{e}}{1+\mathrm{e}}$

$\Rightarrow \tan ^{2} \frac{\alpha}{2}(1-\mathrm{e})=\tan ^{2} \frac{x}{2}(1+\mathrm{e})$

$\Rightarrow \frac{\frac{1}{2}(1-\cos \alpha)}{\frac{1}{2}(1+\cos \alpha)}(1-\mathrm{e})=\frac{\frac{1}{2}(1-\cos x)}{\frac{1}{2}(1+\cos x)}(1+\mathrm{e})$

$\Rightarrow(1-\cos \alpha)(1+\cos x)(1-\mathrm{e})=(1+\cos \alpha)(1-\cos x)(1+\mathrm{e})$

$\Rightarrow(1+\cos x)(1-\mathrm{e})-\cos \alpha(1+\cos x)(1-\mathrm{e})=(1-\cos x)(1+\mathrm{e})+\cos \alpha(1-\cos x)(1+\mathrm{e})$

$\Rightarrow \cos \alpha\{(1+\cos x)(1-\mathrm{e})+(1-\cos x)(1+\mathrm{e})\}=(1+\cos x)(1-\mathrm{e})-(1-\cos x)(1+\mathrm{e})$

$\Rightarrow \cos \alpha=\frac{2 \cos x-2 \mathrm{e}}{2-2 \cos x}=\frac{\cos x-\mathrm{e}}{1-\operatorname{ecos} x}$

Leave a comment