If tan θ=34, then cos2 θ − sin2 θ =

Question:

If $\tan \theta=\frac{3}{4}$, then $\cos ^{2} \theta-\sin ^{2} \theta=$

(a) $\frac{7}{25}$

(b) 1

(C) $\frac{-7}{25}$

(d) $\frac{4}{25}$

Solution:

Given that: $\tan \theta=\frac{3}{4}$

Since $\tan x=\frac{\text { Perpendicular }}{\text { Base }}$

$\Rightarrow$ Perpendicular $=3$

$\Rightarrow$ Base $=4$

$\Rightarrow$ Hypotenuse $=\sqrt{9+16}$

$\Rightarrow$ Hypotenuse $=5$

We know that $\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}$ and $\cos \theta=\frac{\text { Base }}{\text { Hypotenuse }}$

We find:

$\cos ^{2} \theta-\sin ^{2} \theta$

 

$(4)^{2}(3)^{2}$

$=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$

$=\frac{16}{25}-\frac{9}{25}$

$=\frac{7}{25}$

Hence the correct option is (a)

Leave a comment