If tan θ=34, find the value of 1−cos θ1+cos θ.

Question:

If $\tan \theta=\frac{3}{4}$, find the value of $\frac{1-\cos \theta}{1+\cos \theta}$.

Solution:

Given: $\tan \theta=\frac{3}{4}$

We have to find the value of the expression $\frac{1-\cos \theta}{1+\cos \theta}$.

From the above figure, we have

$A C=\sqrt{A B^{2}+B C^{2}}$

$=\sqrt{3^{2}+4^{2}}$

$=5$

$\Rightarrow \cos \theta=\frac{4}{5}$

Therefore,

$\frac{1-\cos \theta}{1+\cos \theta}=\frac{1-\frac{4}{5}}{1+\frac{4}{5}}$

$=\frac{1}{9}$

Hence, the value of the given expression is $\frac{1}{9}$.

 

Leave a comment