Question:
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ is
A. 1/√10
B. – 1/√10
C. – 3/√10
D. 3/√10
Solution:
C. – 3/√10
Explanation:
According to the question,
Given that, tan θ = 3 and θ lies in third quadrant
⇒ cot θ = 1/3
We know that,
Cosec2θ = 1+cot2θ
$=1+\left(\frac{1}{3}\right)^{2}=1+\frac{1}{9}=\frac{10}{9}$
$\Rightarrow \sin ^{2} \theta=\frac{9}{10}$
$\Rightarrow \sin \theta=\pm \frac{3}{\sqrt{10}}$
$\Rightarrow \sin \theta=-\frac{3}{\sqrt{10}}$, since $\theta$ lies in third quadrant.
Thus, option (C) – 3/√10 is the correct answer.