Question:
If tan 2θ = cot (θ + 60°), where 2θ and (θ + 6°) an acute angles, find the value of θ.
Solution:
Given: tan2θ = cot(θ + 60°)
$\tan 2 \theta=\cot \left(\theta+60^{\circ}\right)$
$\Rightarrow \cot \left(90^{\circ}-2 \theta\right)=\cot \left(\theta+60^{\circ}\right) \quad\left(\because \tan \theta=\cot \left(90^{\circ}-\theta\right)\right)$
$\Rightarrow 90^{\circ}-2 \theta=\theta+60^{\circ}$
$\Rightarrow 90^{\circ}-60^{\circ}=\theta+2 \theta$
$\Rightarrow 3 \theta=30^{\circ}$
$\Rightarrow \theta=\frac{30^{\circ}}{3}$
$\Rightarrow \theta=10^{\circ}$
Hence, the value of $\theta$ is $10^{\circ}$.