If $\tan \theta=\frac{12}{13}$, find the value of $\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Given: $\tan \theta=\frac{12}{13}$
To find the value of $\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Now, we know the following trigonometric identity
$\operatorname{cosec}^{2} \theta=1+\tan ^{2} \theta$
Therefore, by substituting the value of $\tan \theta$ from equation (1),
We get,
$\operatorname{cosec}^{2} \theta=1+\left(\frac{12}{13}\right)^{2}$
$=1+\frac{(12)^{2}}{(13)^{2}}$
$=1+\frac{144}{169}$
By taking L.C.M. on the R.H.S,
We get,
$\operatorname{cosec}^{2} \theta=\frac{169+144}{169}$
$=\frac{313}{169}$
Therefore
$\operatorname{cosec} \theta=\frac{\sqrt{313}}{13}$.....(2)
Now, we know that
$\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Therefore,
$\sin \theta=\frac{1}{\operatorname{cosec} \theta}$
$\sin \theta=\frac{1}{\frac{\sqrt{313}}{13}}$
$=\frac{13}{\sqrt{313}}$
Therefore
$\sin \theta=\frac{13}{\sqrt{313}}$.....(3)
Now, we know the following trigonometric identity
$\cos ^{2} \theta+\sin ^{2} \theta=1$
Now by substituting the value of $\sin \theta$ from equation (3)
We get,
$\cos ^{2} \theta=1-\left(\frac{13}{\sqrt{313}}\right)^{2}$
$=1-\frac{(13)^{2}}{(\sqrt{313})^{2}}$
$=1-\frac{169}{313}$
$=1-\frac{169}{313}$
Therefore, by taking L.C.M on R.H.S
We get,
$\cos ^{2} \theta=\frac{313-169}{313}$
$=\frac{144}{313}$
Now, by taking square root on both sides
We get,
$\cos \theta=\sqrt{\frac{144}{313}}$
$=\frac{12}{\sqrt{313}}$
Therefore,
$\cos \theta=\frac{12}{\sqrt{313}}$....(4)
Substituting the value of $\sin \theta$ and $\cos \theta$ from equation (3) and (4) respectively in the expression below
$\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$
Therefore,
$\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{2 \times \frac{13}{\sqrt{313}} \times \frac{12}{\sqrt{313}}}{\left(\frac{13}{\sqrt{313}}\right)^{2}-\left(\frac{12}{\sqrt{313}}\right)^{2}}$
$=\frac{\frac{2 \times 13 \times 12}{313}}{\frac{(13)^{2}}{313}-\frac{(12)^{2}}{313}}$
$=\frac{\frac{312}{313}}{\frac{169}{313}-\frac{144}{313}}$
$=\frac{\frac{312}{313}}{\frac{169-144}{313}}$
$=\frac{\frac{312}{313}}{\frac{25}{313}}$
$=\frac{312}{25}$
Therefore, $\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{312}{25}$