Question:
If sum of the 3rd and the 8th terms of an AP is 7 and the sum of the 7th and 14th terms is -3, then find the 10th term
Solution:
$a_{3}+a_{8}=7$ and $a_{7}+a_{14}=-3$
$\Rightarrow \quad a+(3-1) d+a+(8-1) d=7 \quad\left[\because a_{n}=a+(n-1) d\right]$
and $\quad a+(7-1) d+a+(14-1) d=-3$
$a+2 d+a+7 d=7$
and $\quad a+6 d+a+13 d=-3$
$2 a+9 d=7$ ...(i)
and $2 a+19 d=-3$ $..... (ii)
On subtracting Eq. (i) from Eq. (ii), we get
$10 d=-10 \Rightarrow d=-1 \quad$ [from Eq. (i)]
$2 a+9(-1)=7$
$\Rightarrow \quad 2 a-9=7$
$\Rightarrow \quad 2 a=16 \Rightarrow a=8$
$\therefore \quad a_{10}=a+(10-1) d$
$=8+9(-1)$
$=8-9=-1$