If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
We have:
$\sin x+\sin ^{2} x=1$ .....(1)
$\Rightarrow \sin x=1-\sin ^{2} x$
$\Rightarrow \sin x=\cos ^{2} x$ ..(2)
Now, taking cube of (1):
$\sin x+\sin ^{2} x=1$
$\Rightarrow\left(\sin x+\sin ^{2} x\right)^{3}=(1)^{3}$
$\Rightarrow(\sin x)^{3}+\left(\sin ^{2} x\right)^{3}+3(\sin x)^{2}\left(\sin ^{2} x\right)+3(\sin x)\left(\sin ^{2} x\right)^{2}=1$
$\Rightarrow(\sin x)^{3}+(\sin x)^{6}+3(\sin x)^{4}+3(\sin x)^{5}=1$
$\Rightarrow(\sin x)^{6}+3(\sin x)^{5}+3(\sin x)^{4}+(\sin x)^{3}=1$
$\Rightarrow\left(\cos ^{2} x\right)^{6}+3\left(\cos ^{2} x\right)^{5}+3\left(\cos ^{2} x\right)^{4}+\left(\cos ^{2} x\right)^{3}=1$
$\Rightarrow \cos ^{12} x+3 \cos ^{10} x+3 \cos ^{8} x+\cos ^{6} x=1$