Question:
If sin x + cosec x = 2, then write the value of sinn x + cosecn x.
Solution:
We have:
$\sin x+\operatorname{cosec} x=2$
$\Rightarrow \sin x+\frac{1}{\sin x}=2$
$\Rightarrow \frac{\sin ^{2} x+1}{\sin x}=2$
$\Rightarrow \sin ^{2} x+1=2 \sin x$
$\Rightarrow \sin ^{2} x+1-2 \sin x=0$
$\Rightarrow(\sin x-1)^{2}=0$
$\Rightarrow \sin x-1=0$
$\Rightarrow \sin x=1$
And, $\operatorname{cosec} x=\frac{1}{\sin x}=1$
$\therefore \sin ^{n} x+\operatorname{cosec}^{n} x=1^{n}+1^{n}$
$=1+1=2$