Question:
If $\sin x \cos y=\frac{1}{4}$ and $3 \tan x=4 \tan y$, then $\sin (x-y)$ is equal to ____________________.
Solution:
Given $\sin x \cos y=\frac{1}{4}$
and $3 \tan x=4 \tan y$ i. e. $\tan x=\frac{4}{3} \tan y$
i. e. $\frac{\tan x}{\tan y}=\frac{4}{3}$
i. e. $\frac{\sin x}{\cos x} \frac{\cos y}{\sin y}=\frac{4}{3}$
$\Rightarrow \frac{1 / 4}{\cos x \sin y}=\frac{4}{3}$
$\Rightarrow \cos x \sin y=\frac{3}{16}$
$\therefore \sin (x-y)=\sin x \cos y-\cos x \sin y$
$=\frac{1}{4}-\frac{3}{16}$
$=\frac{4-3}{16}$
$\sin (x-y)=\frac{1}{16}$
hence, value of $\sin (x-y)=\frac{1}{16}$.