Question:
If $\sin x=\frac{-24}{25}$, then the value of $\tan x$ is __________________ .
Solution:
Given $\sin x=\frac{-24}{25}$ i.e $\mathrm{x}$ lies in III or IV quadrant
$\sin x=\frac{A B}{A C}=\frac{-24}{25}$
Since $A C^{2}=A B^{2}+B C^{2}$
i. e $25^{2}=(24)^{2}+B C^{2}$
$\Rightarrow 625=576+B C^{2}$
$\Rightarrow B C^{2}=49$
$B C=\pm 7$
$\Rightarrow \tan x=\frac{24}{7}$ or $\tan x=\frac{-24}{7}$