If $\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$, prove that
(i) $\sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}}$
(ii) $\cos (\alpha-\beta)=\frac{a^{2}+b^{2}-2}{2}$
The given equations are $\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$.
(i)
$\because \sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$
$\therefore 2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=a \quad \ldots(1)$
Now, using the identity $\sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$ for the LHS of $\cos \alpha+\cos \beta=b$, we get
$2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}=b$ ....(2)
On dividing (1) by (2), we get
$\tan \frac{\alpha+\beta}{2}=\frac{a}{b}$
We know,
$\sin \theta=\frac{2 \tan \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
$\therefore \sin (\alpha+\beta)=\frac{2 \tan \left(\frac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}$
$\Rightarrow \sin (\alpha+\beta)=\frac{2 \times \frac{a}{b}}{1+\frac{a^{2}}{2}}=\frac{2 a b}{a^{2}+b^{2}}$
(ii)
On squaring $\sin \alpha+\sin \beta=a$ and $\cos \alpha+\cos \beta=b$ and adding them, we get
$\sin ^{2} \alpha+\sin ^{2} \beta+2 \times \sin \alpha \sin \beta+\cos ^{2} \alpha+\cos ^{2} \beta+2 \times \cos \alpha \cos \beta=a^{2}+b^{2}$
$\Rightarrow 1+1+2(\sin \alpha \sin \beta+\cos \alpha \cos \beta)=a^{2}+b^{2}$
$\Rightarrow 2(\sin \alpha \sin \beta+\cos \alpha \cos \beta)=a^{2}+b^{2}-2$
$\Rightarrow 2 \cos (\alpha-\beta)=a^{2}+b^{2}-2 \quad(\because \cos (\mathrm{A}-\mathrm{B})=\sin \mathrm{A} \sin \mathrm{B}+\cos \mathrm{A} \cos \mathrm{B})$
$\Rightarrow \cos (\alpha-\beta)=\frac{a^{2}+b^{2}-2}{2}$