Question:
If sin θ + cos θ = 1, then find the general value of θ.
Solution:
According to the question,
sin θ + cos θ = 1
As, sin θ + cos θ = 1
$\Rightarrow \sqrt{2}\left(\frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta\right)=1$
We know that,
$\sin (\pi / 4)=\cos (\pi / 4)=1 / \sqrt{2}$
$\Rightarrow \sqrt{2}\left(\sin \theta \cos \frac{\pi}{4}+\sin \frac{\pi}{4} \cos \theta\right)=1$
We know that
$\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\Rightarrow \sin \left(\frac{\pi}{4}+\theta\right)=\frac{1}{\sqrt{2}}$
$\Rightarrow \sin \left(\frac{\pi}{4}+\theta\right)=\sin \frac{\pi}{4}$
Since we know,
If sin θ = sinα ⇒ θ = nπ + (-1)nα
We get,
θ + π/4 = nπ + (-1)n(π/4)
⇒ θ = nπ + (π/4)((-1)n – 1)