Question:
If sin θ – cos θ = 0 then the value of (sin4θ + cos4θ) is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{3}{4}$
(d) 1
Solution:
$\sin \theta-\cos \theta=0$
$\Rightarrow \sin \theta=\cos \theta$
$\Rightarrow \frac{\sin \theta}{\cos \theta}=1$
$\Rightarrow \tan \theta=\tan 45^{\circ}$
$\Rightarrow \theta=45^{\circ}$
$\therefore \sin ^{4} \theta+\cos ^{4} \theta$
$=\sin ^{4} 45^{\circ}+\cos ^{4} 45^{\circ}$
$=\left(\frac{1}{\sqrt{2}}\right)^{4}+\left(\frac{1}{\sqrt{2}}\right)^{4}$
$=\frac{1}{4}+\frac{1}{4}$
$=\frac{2}{4}$
$=\frac{1}{2}$
Hence, the correct answer is option (b).