Question:
If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation
(a) a2 + b2 + 2ac = 0
(b) a2 – b2 + 2ac = 0
(c) a2 + c2 + 2ab = 0
(d) a2 – b2 – 2ac = 0
Solution:
Given sinθ and cosθ are roots of ax2 – bx + c = 0
Sum of roots is $\frac{b}{a}$ and product of root is $\frac{c}{a}$
i.e $\cos \theta+\sin \theta=\frac{b}{a}$ and $\cos \theta \sin \theta=\frac{c}{a}$
Since $\sin ^{2} \theta+\cos ^{2} \theta=1$
i. e $(\sin \theta+\cos \theta)^{2}=\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta$
i.e $\left(\frac{b}{a}\right)^{2}=1+2 \frac{c}{a}$
i. e $b^{2}=a^{2}+2 a c$
i. e $a^{2}-b^{2}+2 a c$
Hence, the correct answer is option B.