If $\sin (A-B)=\frac{1}{2}$ and $\cos (A+B)=\frac{1}{2}, 0^{\circ}
Given:
$\sin (A-B)=\frac{1}{2} \ldots \ldots$(1)
$\cos (A+B)=\frac{1}{2}$....(2)
We know that,
$\sin 30^{\circ}=\frac{1}{2}$....(3)
$\cos 60^{\circ}=\frac{1}{2}$....(4)
Now by comparing equation (1) and (3)
We get,
$A-B=30$......(5)
Now by comparing equation (2) and (4)
We get,
$A+B=60 \ldots(6)$
Now to get the values of A and B, let us solve equation (5) and (6) simultaneously
Therefore by adding equation (5) and (6)
We get,
Therefore,
$2 A=90$
$\Rightarrow A=\frac{90}{2}$
$\Rightarrow A=45^{\circ}$
Hence $A=45^{\circ}$
Now by subtracting equation (5) from equation (6)
We get,
Therefore,
$2 B=30$
$\Rightarrow B=\frac{30}{2}$
$\Rightarrow B=15^{\circ}$
Hence $B=15^{\circ}$
Therefore the values of A and B are as follows
$A=45^{\circ}$ and $B=15^{\circ}$