$\Rightarrow \cos A=\sqrt{1-\left(\frac{4}{5}\right)^{2}} \quad$ and $\quad \sin B=\sqrt{1-\left(\frac{5}{13}\right)^{2}}$
$\Rightarrow \cos A=\sqrt{1-\frac{16}{25}} \quad$ and $\quad \sin B=\sqrt{1-\frac{25}{169}}$
$\Rightarrow \cos A=\sqrt{\frac{9}{25}} \quad$ and $\sin B=\sqrt{\frac{144}{169}}$
$\Rightarrow \quad \cos A=\frac{3}{5} \quad$ and $\quad \sin B=\frac{12}{13}$
Now,
(i) $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$=\frac{4}{5} \times \frac{5}{13}+\frac{3}{5} \times \frac{12}{13}$
$=\frac{20}{65}+\frac{36}{65}$
$=\frac{56}{65}$
(ii) $\cos (A+B)=\cos A \cos B-\sin A \sin B$
$=\frac{3}{5} \times \frac{5}{13}-\frac{4}{5} \times \frac{12}{13}$
$=\frac{15}{65}-\frac{48}{55}$
$=\frac{-33}{65}$
(iii) $\sin (A-B)=\sin A \cos B-\cos A \sin B$
$=\frac{4}{5} \times \frac{5}{13}-\frac{3}{5} \times \frac{12}{13}$
$=\frac{20}{65}-\frac{36}{65}$
$=\frac{-16}{65}$
(iv) $\cos (A-B)=\cos A \cos B+\sin A \sin B$
$=\frac{3}{5} \times \frac{5}{13}+\frac{4}{5} \times \frac{12}{13}$
$=\frac{15}{65}+\frac{48}{65}$
$=\frac{63}{65}$