Question:
If sin 3A = cos (A – 10°), where 3A is an acute angle then find ∠A.
Solution:
Given: sin3A = cos(A – 10°)
$\sin 3 A=\cos \left(A-10^{\circ}\right)$
$\Rightarrow \cos \left(90^{\circ}-3 A\right)=\cos \left(A-10^{\circ}\right) \quad\left(\because \sin \theta=\cos \left(90^{\circ}-\theta\right)\right)$
$\Rightarrow 90^{\circ}-3 A=A-10^{\circ}$
$\Rightarrow 90^{\circ}+10^{\circ}=A+3 A$
$\Rightarrow 4 A=100^{\circ}$
$\Rightarrow A=\frac{100^{\circ}}{4}$
$\Rightarrow A=25^{\circ}$
Hence, $\angle A=25^{\circ}$.