If $\sin \theta=\frac{3}{5}$, evaluate $\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}$.
Given: $\sin \theta=\frac{3}{5}$.....(1)
To find the value of $\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}$
Now, we know the following trigonometric identity
$\cos ^{2} \theta+\sin ^{2} \theta=1$
Therefore, by substituting the value of $\sin \theta$ from equation (1),
We get,
$\cos ^{2} \theta+\left(\frac{3}{5}\right)^{2}=1$
Therefore,
$\cos ^{2} \theta=1-\left(\frac{3}{5}\right)^{2}$
$=1-\frac{(3)^{2}}{(5)^{2}}$
$=1-\frac{9}{25}$
Now by taking L.C.M
We get,
$\cos ^{2} \theta=\frac{25-9}{25}$
$=\frac{16}{25}$
Therefore by taking square root on both sides
We get,
$\cos \theta=\sqrt{\frac{16}{25}}$
$=\frac{\sqrt{16}}{\sqrt{25}}$
$=\frac{4}{5}$
Therefore,
$\cos \theta=\frac{4}{5}$.....(2)
Now, we know that
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
Therefore by substituting the value of $\sin \theta$ and $\cos \theta$ from equation (1) and (2) respectively
We get,
$\tan \theta=\frac{\frac{3}{5}}{\frac{4}{5}}$
$\tan \theta=\frac{3}{5} \times \frac{5}{4}$
$=\frac{3}{4}$
$\tan \theta=\frac{3}{4}$...(3)
Also, we know that
$\cot \theta=\frac{1}{\tan \theta}$
Therefore from equation (4) ,
We get,
$\cot \theta=\frac{1}{\frac{3}{4}}$
$=\frac{4}{3}$
Therefore,
$\cot \theta=\frac{4}{3}$
Now, by substituting the value of $\cos \theta, \tan \theta$ and $\cot \theta$ from equation (2), (3) and (4) respectively in the expression below
$\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}$
We get,
$\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}=\frac{\frac{4}{5}-\frac{1}{3}}{2 \times \frac{4}{3}}$
$=\frac{\frac{4}{5}-\frac{4}{3}}{\frac{2 \times 4}{3}}$
$=\frac{\frac{4 \times 3}{5 \times 3}-\frac{4 \times 5}{3 \times 5}}{\frac{8}{3}}$
$\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}=\frac{\frac{12}{15}-\frac{20}{15}}{\frac{8}{3}}$
$=\frac{\frac{-8}{15}}{\frac{8}{3}}$
$=\frac{-8}{15} \times \frac{3}{8}$
$=\frac{-1}{5}$
Therefore, $\frac{\cos \theta-\frac{1}{\tan \theta}}{2 \cot \theta}=\frac{-1}{5}$