If $\sin \theta=\frac{3}{4}$, prove that $\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\frac{\sqrt{7}}{3}$.
Given:
$\sin \theta=\frac{3}{4} \ldots \ldots$(1)
To prove:
$\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\frac{\sqrt{7}}{3}$.....(2)
By definition,
$\sin \mathrm{A}=\frac{\text { Perpendicular side opposite to } \angle A}{\text { Hypotenuse }}$.....(3)
By Comparing (1) and (3)
We get,
Perpendicular side = 3 and
Hypotenuse = 4
Side BC is unknown.
So we find $\mathrm{BC}$ by applying Pythagoras theorem to right angled $\triangle A B C$,
Hence,
$A C^{2}=A B^{2}+B C^{2}$
Now we substitute the value of perpendicular side (AB) and hypotenuse (AC) and get the base side (BC)
Therefore,
$4^{2}=3^{2}+B C^{2}$
$B C^{2}=4^{2}-3^{2}$
$B C^{2}=16-9$
$B C^{2}=7$
$B C=\sqrt{7}$
$B C^{2}=4^{2}-3^{2}$
$B C^{2}=16-9$
$B C^{2}=7$
$B C=\sqrt{7}$
Hence, Base side BC $=\sqrt{7}$.....(3)
Now, $\cos A=\frac{\text { Base }}{\text { Hypotenuse }}$
Therefore from fig. a and equation (3)
$\cos A=\frac{B C}{A C}$
$=\frac{\sqrt{7}}{4}$
Therefore,
$\cos A=\frac{\sqrt{7}}{4}$....(4)
Now, $\operatorname{cosec} A=\frac{1}{\sin A}$
Therefore from fig. a and equation (1) ,
$\operatorname{cosec} A=\frac{\text { Hypotenuse }}{\text { Perpendicular }}$
$\operatorname{cosec} A=\frac{4}{3}$.....(5)
Now, $\sec A=\frac{1}{\cos \mathrm{A}}$
Therefore from fig. a and equation (4) ,
$\sec A=\frac{4}{\sqrt{7}}$.....(6)
Now, $\cot A=\frac{\cos \mathrm{A}}{\sin A}$
Therefore by substituting the values from equation (1) and (4) ,
We get,
$\cot A=\frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}}$'
$=\frac{\sqrt{7}}{4} \times \frac{4}{3}$
$=\frac{\sqrt{7}}{3}$
Therefore,
$\cot A=\frac{\sqrt{7}}{3}$....(7)
Now by substituting the value of $\operatorname{cosec} A, \sec A$ and $\cot A$ from equation $(5),(6)$ and (7) respectively in the L. H.S of expression (2),
We get,
$\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\sqrt{\frac{\left(\frac{4}{3}\right)^{2}-\left(\frac{\sqrt{7}}{3}\right)^{2}}{\left(\frac{4}{\sqrt{7}}\right)^{2}-1}}$
$=\sqrt{\frac{\frac{(4)^{2}}{(3)^{2}}-\frac{(\sqrt{7})^{2}}{(3)^{2}}}{\frac{(4)^{2}}{(\sqrt{7})^{2}}-1}}$
$=\sqrt{\frac{\frac{16}{9}-\frac{7}{9}}{\frac{16}{7}-1}}$
$=\sqrt{\frac{\frac{16-7}{9}}{\frac{16-7}{7}}}$
$=\sqrt{\frac{\frac{9}{9}}{\frac{9}{7}}}$
$=\sqrt{\frac{9}{9} \times \frac{7}{9}}$
Therefore,
$\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\sqrt{\frac{7}{9}}$
$=\frac{\sqrt{7}}{\sqrt{9}}$
$=\frac{\sqrt{7}}{3}$
Hence it is proved that
$\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\frac{\sqrt{7}}{3}$