If $\sin 2 \theta+\sin 2 \phi=\frac{1}{2}$ and $\cos 2 \theta+\cos 2 \phi=\frac{3}{2}$, then $\cos ^{2}(\theta-\phi)=$
(a) $\frac{3}{8}$
(b) $\frac{5}{8}$
(c) $\frac{3}{4}$
(d) $\frac{5}{4}$
(b) $\frac{5}{8}$
Given:
$\sin 2 \theta+\sin 2 \phi=\frac{1}{2}$ ...(i)
and
$\cos 2 \theta+\cos 2 \phi=\frac{3}{2}$ ....(ii)
Squaring and adding (i) and (ii), we get:
$(\sin 2 \theta+\sin 2 \phi)^{2}+(\cos 2 \theta+\cos 2 \phi)^{2}=\frac{1}{4}+\frac{9}{4}$
$\Rightarrow\left[2 \sin \left(\frac{2 \theta+2 \phi}{2}\right) \cos \left(\frac{2 \theta-2 \phi}{2}\right)\right]^{2}+\left[2 \cos \left(\frac{2 \theta+2 \phi}{2}\right) \cos \left(\frac{2 \theta-2 \phi}{2}\right)\right]^{2}=\frac{5}{2}$
$\Rightarrow 4 \sin ^{2}(\theta+\phi) \cos ^{2}(\theta-\phi)+4 \cos ^{2}(\theta+\phi) \cos ^{2}(\theta-\phi)=\frac{5}{2}$
$\Rightarrow 4 \cos ^{2}(\theta-\phi)\left[\sin ^{2}(\theta+\phi)+\cos ^{2}(\theta+\phi)\right]=\frac{5}{2}$
$\Rightarrow 4 \cos ^{2}(\theta-\phi)=\frac{5}{2}$
$\Rightarrow \cos ^{2}(\theta-\phi)=\frac{5}{8}$