Question:
If $\sec x \cos 5 x+1=0$, where $0
Solution:
The given equation is secx cos5x + 1 = 0.
Now,
$\sec x \cos 5 x+1=0$
$\Rightarrow \frac{\cos 5 x}{\cos x}+1=0$
$\Rightarrow \cos 5 x+\cos x=0$
$\Rightarrow 2 \cos 3 x \cos 2 x=0$
$\Rightarrow \cos 3 x=0$ or $\cos 2 x=0$
$\Rightarrow 3 x=(2 n+1) \frac{\pi}{2}, n \in \mathbf{Z}$ or $2 x=(2 m+1) \frac{\pi}{2}, m \in \mathbf{Z}$
$\Rightarrow x=(2 n+1) \frac{\pi}{6}$ or $x=(2 m+1) \frac{\pi}{4}$
Putting n = 0 and n = 1, we get
$x=\frac{\pi}{6}, \frac{\pi}{2} \quad\left(0
Also, putting m = 0, we get
$x=\frac{\pi}{4} \quad\left(0
Hence, the values of $x$ are $\frac{\pi}{6}, \frac{\pi}{4}$ and $\frac{\pi}{2}$.