Question:
If $\sec ^{2} \theta(1+\sin \theta)(1-\sin \theta)=k$, then find the value of $k$.
Solution:
Given:
$\sec ^{2} \theta(1+\sin \theta)(1-\sin \theta)=k$
$\Rightarrow \sec ^{2} \theta\{(1+\sin \theta)(1-\sin \theta)\}=k$
$\Rightarrow \quad \sec ^{2} \theta\left(1-\sin ^{2} \theta\right)=k$
$\Rightarrow \quad \sec ^{2} \theta \cos ^{2} \theta=k$
$\Rightarrow \quad \frac{1}{\cos ^{2} \theta} \times \cos ^{2} \theta=k$
$\Rightarrow \quad 1=k$
$\Rightarrow \quad k=1$
Hence, the value of k is 1.