If $\sec x=x+\frac{1}{4 x}$, then $\sec x+\tan x=$
(a) $x, \frac{1}{x}$
(b) $2 x, \frac{1}{2 x}$
(c) $-2 x, \frac{1}{2 x}$
(d) $-\frac{1}{x}, x$
(b) $2 x, \frac{1}{2 x}$
We have,
$\sec x=x+\frac{1}{4 x}$
$\Rightarrow \sec ^{2} x==x^{2}+\frac{1}{16 x^{2}}+\frac{1}{2}$
$\Rightarrow 1+\tan ^{2} x=1+x^{2}+\frac{1}{16 x^{2}}-\frac{1}{2}$
$\Rightarrow \tan ^{2} x=x^{2}+\frac{1}{16 x^{2}}-\frac{1}{2}$
$\Rightarrow \tan ^{2} x=\left(x-\frac{1}{4 x}\right)^{2}$
$\therefore \tan x=\pm\left(x-\frac{1}{4 x}\right)$
$\Rightarrow \sec x-\tan x=\left(x+\frac{1}{4 x}\right)-\left(x-\frac{1}{4 x}\right)$ or $\left(x+\frac{1}{4 x}\right)-\left[-\left(x-\frac{1}{4 x}\right)\right]$
$=\frac{1}{2 x}$ or $2 x$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.