Question:
If sec x + tan x = k, cos x =
(a) $\frac{k^{2}+1}{2 k}$
(b) $\frac{2 k}{k^{2}+1}$
(c) $\frac{k}{k^{2}+1}$
(d) $\frac{k}{k^{2}-1}$
Solution:
(b) $\frac{2 k}{k^{2}+1}$
We have:
$\sec x+\tan x=k$ ...(1)
$\Rightarrow \frac{1}{\sec x+\tan x}=\frac{1}{k}$
$\Rightarrow \frac{\sec ^{2} x-\tan ^{2} x}{\sec x+\tan x}=\frac{1}{k}$
$\Rightarrow \frac{(\sec x+\tan x)(\sec x-\tan x)}{(\sec x+\tan x)}=\frac{1}{k}$
$\therefore \sec x-\tan x=\frac{1}{k}$ ...(2)
Adding (1) and (2):
$2 \sec x=k+\frac{1}{k}$
$\Rightarrow 2 \sec x=\frac{k^{2}+1}{k}$
$\Rightarrow \sec x=\frac{k^{2}+1}{2 k}$
$\Rightarrow \frac{1}{\cos x}=\frac{k^{2}+1}{2 k}$
$\Rightarrow \cos x=\frac{2 k}{k^{2}+1}$