Question:
If sec θ + tan θ + 1 = 0 then (sec θ – tan θ) = ?
(a) 1
(b) –1
(c) 0
(d) 2
Solution:
Given: $\sec \theta+\tan \theta+1=0$
$\sec \theta+\tan \theta+1=0$
$\Rightarrow \sec \theta+\tan \theta=-1$
Multiplying and dividing LHS by $\sec \theta-\tan \theta$, we get
$\Rightarrow(\sec \theta+\tan \theta) \times\left(\frac{\sec \theta-\tan \theta}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow\left(\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow\left(\frac{1+\tan ^{2} \theta-\tan ^{2} \theta}{\sec \theta-\tan \theta}\right)=-1 \quad\left(\because \sec ^{2} \theta=1+\tan ^{2} \theta\right)$
$\Rightarrow\left(\frac{1}{\sec \theta-\tan \theta}\right)=-1$
$\Rightarrow(\sec \theta-\tan \theta)=-1$
Hence, the correct option is (b).
Comments
AYAN
Dec. 9, 2023, 6:35 a.m.
1 + tan²θ = sec²
1 = sec²θ - tan²θ
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)..........( Using a² - b² Identity)
Also Secθ + tanθ + 1 = 0
Therefore, secθ + tanθ = - 1
Now
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)
1 = ( - 1)( secθ - tanθ)
1/(-1) = secθ - tanθ
=> Secθ - tanθ = -1
Hence proved 🫡
Correct option.............>(B)
AYAN
Dec. 9, 2023, 6:35 a.m.
1 + tan²θ = sec²
1 = sec²θ - tan²θ
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)..........( Using a² - b² Identity)
Also Secθ + tanθ + 1 = 0
Therefore, secθ + tanθ = - 1
Now
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)
1 = ( - 1)( secθ - tanθ)
1/(-1) = secθ - tanθ
=> Secθ - tanθ = -1
Hence proved 🫡
Correct option.............>(B)
???? What about this explanation of mine
Brother
AYAN
Dec. 9, 2023, 6:35 a.m.
1 + tan²θ = sec²
1 = sec²θ - tan²θ
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)..........( Using a² - b² Identity)
Also Secθ + tanθ + 1 = 0
Therefore, secθ + tanθ = - 1
Now
sec²θ - tan²θ = ( secθ + tanθ)(secθ - tanθ)
1 = ( - 1)( secθ - tanθ)
1/(-1) = secθ - tanθ
=> Secθ - tanθ = -1
Hence proved 🫡
Correct option.............>(B)