If sec $A=\frac{17}{8}$, verify that $\frac{34 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}$
Given:
$\sec A=\frac{17}{8}$.....(1)
To verify:
$\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}$......…… (2)
Now we know that $\sec A=\frac{1}{\cos A}$
Therefore $\cos A=\frac{1}{\sec A}$
Now, by substituting the value of $\sec A$ from equation (1)
We get,
$\cos A=\frac{1}{\frac{17}{8}}$
$=\frac{8}{17}$
Therefore,
$\cos A=\frac{8}{17}$.....(3)
Now, we know the following trigonometric identity
$\cos ^{2} A+\sin ^{2} A=1$
Therefore,
$\sin ^{2} A=1-\cos ^{2} A$
Now by substituting the value of $\cos A$ from equation (3)
We get,
$\sin ^{2} A=1-\left(\frac{8}{17}\right)^{2}$
$=1-\frac{(8)^{2}}{(17)^{2}}$
$=1-\frac{64}{289}$
Now by taking L.C.M
We get,
$\sin ^{2} A=\frac{289-64}{289}$
$=\frac{225}{289}$
Now, by taking square root on both sides
We get,
$\sin A=\sqrt{\frac{225}{289}}$
$=\frac{\sqrt{225}}{\sqrt{289}}$
$=\frac{15}{17}$
Therefore,
$\sin A=\frac{15}{17}$....(4)
Now, we know that $\tan A=\frac{\sin A}{\cos A}$
Now by substituting the value of $\cos A$ and $\sin A$ from equation (3) and (4) respectively
We get,
$\tan A=\frac{\frac{15}{17}}{\frac{8}{17}}$
$=\frac{15}{17} \times \frac{17}{8}$
$=\frac{15}{8}$
Therefor
$\tan A=\frac{15}{8} \ldots \ldots$(5)
Now from the expression of equation (2)
L.H.S $=\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}$
Now by substituting the value of $\cos A$ and $\sin A$ from equation (3) and (4)
We get,
L.H.S $=\frac{3-4\left(\frac{15}{17}\right)^{2}}{4\left(\frac{8}{17}\right)^{2}-3}$
Therefore,
L.H.S $=\frac{3-4\left(\frac{225}{289}\right)}{4\left(\frac{64}{289}\right)-3}$
$=\frac{3-\frac{900}{289}}{\frac{256}{289}-3}$
Now by taking L.C.M of both numerator and denominator
We get,
L.H.S $=\frac{\frac{3 \times 289}{1 \times 289}-\frac{900}{289}}{\frac{256}{289}-\frac{3 \times 289}{1 \times 289}}$
$=\frac{\frac{867}{289}-\frac{900}{289}}{\frac{256}{289}-\frac{867}{289}}$
$=\frac{\frac{867-900}{289}}{\frac{256-867}{289}}$
$=\frac{\frac{-33}{289}}{\frac{-611}{289}}$
$=\frac{33}{611}$
Therefore,
$\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{33}{611}$///(6)
Now from the expression of equation (2)
R.H.S $=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}$
Now by substituting the value of $\tan A$ from equation (5)
We get,
$R . H . S .=\frac{3-\left(\frac{15}{8}\right)^{2}}{1-3\left(\frac{15}{8}\right)^{2}}$
$=\frac{3-\frac{225}{64}}{1-\frac{3 \times 225}{64}}$
Now by taking L.C.M
We get,
R.H.S $=\frac{\frac{3 \times 64}{1 \times 64}-\frac{225}{64}}{\frac{64-675}{64}}$
$=\frac{\frac{192}{64}-\frac{225}{64}}{\frac{-611}{64}}$
$=\frac{\frac{192-225}{64}}{\frac{-611}{64}}$
Therefore
R.H.S $=\frac{\frac{-33}{64}}{\frac{-611}{64}}$
Therefore,
$\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}=\frac{33}{611}$
Now by comparing equation (6) and (7)
We get,
$\frac{3-4 \sin ^{2} A}{4 \cos ^{2} A-3}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}$