If $\sec \theta=\frac{5}{4}$, find the value of $\frac{\sin \theta-2 \cos \theta}{\tan \theta-\cot \theta}$.
Given: $\sec \theta=\frac{5}{4}$....(1)
To find the value of $\frac{\sin \theta-2 \cos \theta}{\tan \theta-\cot \theta}$
Now we know that $\sec \theta=\frac{1}{\cos \theta}$
Therefore,
$\cos \theta=\frac{1}{\sec \theta}$
Therefore from equation (1)
$\cos \theta=\frac{1}{\frac{5}{4}}$
$\cos \theta=\frac{4}{5}$.....(2)
Also, we know that $\cos ^{2} \theta+\sin ^{2} \theta=1$
Therefore,
$\sin ^{2} \theta=I-\cos ^{2} \theta$
$\sin \theta=\sqrt{1-\cos ^{2} \theta}$
Substituting the value of $\cos \theta$ from equation (2)
We get,
$\sin \theta=\sqrt{1-\left(\frac{4}{5}\right)^{2}}$
$=\sqrt{1-\frac{4^{2}}{5^{2}}}$
$=\sqrt{1-\frac{16}{25}}$
$=\sqrt{\frac{25-16}{25}}$
$=\sqrt{\frac{9}{25}}$
$=\frac{3}{5}$
Therefore
$\sin \theta=\frac{3}{5}$...(3)
Also, we know that $\sec ^{2} \theta=1+\tan ^{2} \theta$.
Therefore,
$\tan ^{2} \theta=\sec ^{2} \theta-1$
Therefore
$\tan ^{2} \theta=\left(\frac{5}{4}\right)^{2}-1$
$=\frac{25}{16}-1$
$=\frac{9}{16}$
Therefore,
$\tan \theta=\sqrt{\frac{9}{16}}$
$=\frac{3}{4}$
Therefore,
$\tan \theta=\frac{3}{4}$....(4)
Also $\cot \theta=\frac{1}{\tan \theta}$
Therefore, from equation (4)
We get,
$\cot \theta=\frac{1}{\frac{3}{4}}$
$\cot \theta=\frac{4}{3}$.....(5)
Substituting the value of $\cos \theta, \sin \theta, \cot \theta$ and $\tan \theta$ from equation (2) (3) (4) and (5) respectively in the expression below
$\frac{\sin \theta-2 \cos \theta}{\tan \theta-\cot \theta}$
We get,
$\frac{\sin \theta-2 \cos \theta}{\tan \theta-\cot \theta}=\frac{\frac{3}{5}-2\left(\frac{4}{5}\right)}{\frac{3}{4}-\frac{4}{3}}$
$=\frac{\frac{3}{5}-\frac{8}{5}}{\frac{(3 \times 3)-(4 \times 4)}{4 \times 3}}$
$=\frac{\frac{\frac{3}{5}-\frac{3}{5}}{(3 \times 3)-(4 \times 4)}}{4 \times 3}$
$=\frac{\frac{3-8}{5}}{\frac{9-16}{4 \times 3}}$
$=\frac{\frac{-5}{5}}{\frac{-7}{12}}$
$=\frac{12}{7}$
Therefore, $\frac{\sin \theta-2 \cos \theta}{\tan \theta-\cot \theta}=\frac{12}{7}$