If sec 4A = cosec (A − 20°),

Question:

If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where $4 A$ is an acute angles, find the value of $A$.

Solution:

Given: $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$ and $4 A$ is an acute angle

We have to find $\theta$

Now

$\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$

$\sec 4 A=\sec \left\{90^{\circ}-\left(A-20^{\circ}\right)\right\}$

$\sec 4 A=\sec \left(90^{\circ}-A+20^{\circ}\right)$

$\sec 4 A=\sec \left(110^{\circ}-A\right)$

$5 A=110^{\circ}$

$A=22^{\circ}$

Hence the value of $A$ is $22^{\circ}$

Leave a comment