If R and S are two equivalence relations on a set A, then R ∩ S is __________.
If R and S are two equivalence relations on a
Let A,
→ Since ∀ x∈A
$(x, x) \in R \quad$ and $\quad(x, x) \in S(\because R$ and $S$ are reflexive $)$
$\Rightarrow(x, x) \in R \cap S \quad \forall x \in A$
i.e $R \cap S$ is Reflexive
$\rightarrow$ Let $(x, y) \in R \cap S$
$\Rightarrow(x, y) \in R$ and $(x, y) \in S$
$\Rightarrow(y, x) \in R$ and $(y, x) \in S(\because R$ and $S$ are symmetric $)$
$\Rightarrow(y, x) \in R \cap S$
$\Rightarrow R \cap S$ is symmetric
$\rightarrow \operatorname{Let}(x, y)(y, z) \in R \cap S$
$\Rightarrow(x, y)(y, z) \in R$ and $(x, y)(y, z) \in S$ as $R$ and $S$ are Transitive
$\Rightarrow(x, z) \in R$ and $(x, z) \in S$
$\Rightarrow(x, z) \in R \cap S$
i.e R ⋂ S is transitive
Hence, R ⋂ S is an equivalence relation