If, prove that

Question:

If $y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right|$, prove that $\frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|$

Solution:

$y=\left|\begin{array}{ccc}f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c\end{array}\right|$

$\Rightarrow y=(m c-n b) f(x)-(l c-n a) g(x)+(l b-m a) h(x)$

Then, $\frac{d y}{d x}=\frac{d}{d x}[(m c-n b) f(x)]-\frac{d}{d x}[(I c-n a) g(x)]+\frac{d}{d x}[(l b-m a) h(x)]$

$=(m c-n b) f^{\prime}(x)-(l c-n a) g^{\prime}(x)+(l b-m a) h^{\prime}(x)$

$=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|$

Thus, $\frac{d y}{d x}=\left|\begin{array}{ccc}f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c\end{array}\right|$

Leave a comment